An MBoC Favorite: Functional coordination of three mitotic motors in Drosophila embryos
نویسنده
چکیده
It is well established that multiple microtubule-based motors contribute to the formation and function of the mitotic spindle, but how the activities of these motors interrelate remains unclear. Here we visualize spindle formation in living Drosophila embryos to show that spindle pole movements are directed by a temporally coordinated balance of forces generated by three mitotic motors, cytoplasmic dynein, KLP61F, and Ncd. Specifically, our findings suggest that dynein acts to move the poles apart throughout mitosis and that this activity is augmented by KLP61F after the fenestration of the nuclear envelope, a process analogous to nuclear envelope breakdown, which occurs at the onset of prometaphase. Conversely, we find that Ncd generates forces that pull the poles together between interphase and metaphase, antagonizing the activity of both dynein and KLP61F and serving as a brake for spindle assembly. During anaphase, however, Ncd appears to have no effect on spindle pole movements, suggesting that its activity is down-regulated at this time, allowing dynein and KLP61F to drive spindle elongation during anaphase B.
منابع مشابه
An MBoC Favorite: The historic covers selected by Joseph Gall that graced MBoC from 1992 to 1996
متن کامل
Early Spindle Assembly in Drosophila Embryos: Role of a Force Balance Involving Cytoskeletal Dynamics and Nuclear Mechanics□D □V
Mitotic spindle morphogenesis depends upon the action of microtubules (MTs), motors and the cell cortex. Previously, we proposed that corticaland MT-based motors acting alone can coordinate early spindle assembly in Drosophila embryos. Here, we tested this model using microscopy of living embryos to analyze spindle pole separation, cortical reorganization, and nuclear dynamics in interphase–pro...
متن کاملEarly spindle assembly in Drosophila embryos: role of a force balance involving cytoskeletal dynamics and nuclear mechanics.
Mitotic spindle morphogenesis depends upon the action of microtubules (MTs), motors and the cell cortex. Previously, we proposed that cortical- and MT-based motors acting alone can coordinate early spindle assembly in Drosophila embryos. Here, we tested this model using microscopy of living embryos to analyze spindle pole separation, cortical reorganization, and nuclear dynamics in interphase-p...
متن کاملTemporal and spatial coordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos
The spatial and temporal dynamics of diploid chromosome organization, microtubule arrangement, and the state of the nuclear envelope have been analyzed in syncytial blastoderm embryos of Drosophila melanogaster during the transition from prophase to metaphase, by three-dimensional optical sectioning microscopy. Time-lapse, three-dimensional data recorded in living embryos revealed that congress...
متن کاملChromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis
BACKGROUND Mitosis involves the interaction of many different components, including chromatin, microtubules, and motor proteins. Dissecting the mechanics of mitosis requires methods of studying not just each component in isolation, but also the entire ensemble of components in its full complexity in genetically tractable model organisms. RESULTS We have developed a mathematical framework for ...
متن کامل